![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiVu_mkdC14Zn2uYABkjsU2ujfIgxVzlVf9hnBr_ff2wGi11Sh3AFW2PEHbtl-VWf449pEyorju9Zgoho6GLsNS0UUUfv8-sXa_InI2_7OePFLWFvhjiTNourUCbS95QlDbSPu_aQTgkMhr/s320/96-Well-Cell-Culture-Plate.jpg)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhSyEMtibbhuAV8_fccas3gZE3C3yis6A8tRzjZMiNc2CounpkgEOYiqRxtij4ySpi1M6xIg9aIVDWlp4uUJdBFxqpH0l5U0cQiuO_XDEzTwxIfHn1CokFwS4mL6th0dL6g5cZip11vUiRr/s320/rl98boltron.jpg)
The 96-well microbiology plate and its plant analog?
A place to discuss the ecology and evolution of plants as well as the functioning of ecosystems. Companion to Resource Strategies of Wild Plants, Princeton University Press.
Murphy, B. P. and D. Bowman. 2009. The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Functional Ecology 23:1040-1049.
Forage crude protein concentrations (%N * 6.25) for male and female bison over the season from Konza.
Bison are the largest native grazers in North America left. Their history is interesting, having almost gone extinct with the Pleistocene megafauna, and not having evolved into their modern form until about six to eight thousand years ago. Most of the attention on the evolution of the animals has been regarding changes in their morphology. Most of the attention to the modern animals has been their genetics and the introgression of cattle genes—finding “pure” bison. Most of the interest in their modern ecology has been on their role as a keystone in ecosystems.
Almost entirely missing from the study of modern bison has been their nutrition. There has been some work on diet—do they eat forbs or grasses; cool- or warm-season grasses. Yet, animals that ranged throughout North America and never had access to grasses like the progenitors of modern cattle would have found in northern Europe would likely face strong nutritional stress throughout much of the year. The adaptations of bison to low forage quality, no less the basic patterns of the availability of energy and protein to bison have gone all but unasked.
At Konza, Gene Towne has been collecting fecal material throughout 2009. Every two weeks, he has collected fresh pies from both males and females. Then we send the samples off to Texas A&M’s GANLab to see what the crude protein (nitrogen) and digestible organic matter (energy) was of the grass that they were eating.
If you look at the patterns from 2009, a few fascinating patterns stand out. First, the minimum protein requirements for mass gain for cattle are about 6% crude protein. Bison at Konza have about 100 day window to gain mass during the growing season. After that, there is little protein available beyond what is required for maintenance.
Second, the differences between males and females has never been observed before. Males tend to form “bachelor” herds and do their own thing until the rut—roughly August. After that, they often go off on their own again. The CP patterns show that the males are not selecting as high a quality forage early in the season, but the peak is broader. During the rut, quality is about the same as females. Afterwards, the males are selecting lower quality forage than the females. Why? Why wouldn’t the males feed in the same places on the higher forage quality. A mystery right now.
Lastly, by mid-October, CP had dropped to roughly 4.5%. Not much good green out there for anyone. Gene’s found that the bison lose about 10% of their weight during the winter, which can be up to 200 pounds for the large males. We’re beginning to see why.
Hopefully, data like this will continue to be taken at Konza for a couple of years. It’ll be fascinating to see the differences between wet and dry years on forage quality. With any luck, we can start similar measurements at a number of other TNC sites with bison to being broader comparisons.
There are a fair number of papers that are impressive for the number of times they are cited. “Instant classics” that accrue a hundred citations in a year—most in the first paragraph of a paper—and have helped define some part of a discipline.
These papers are impressive and worthy of study in hopes of replicating them, but I am more interested in papers that are likely just as important but have rarely been cited. Any scientist can use Web of Science to find the most cited paper on a topic and then cite it themselves in order to seem authoritative. But, the true scholar knows the obscure paper, one that might only have been cited a few times a year, but can make the case that the paper is as important as one cited a hundred times a year, if only the obscure one were discovered.
I do not have a comprehensive list, but it is an interesting exercise to think about what are the most important papers never to have been cited. If we restrict the list to the papers published over five years ago and have received less than five citations a year on average. And one cannot put one’s own papers on the list, which is unfortunate since most of my CV is obscure but important. (Except for the one soil CO2 flux paper in GCB. That one deserves to be obscure.) Here are ones that I came up with:
1) Wahl, S. and P. Ryser. 2000. Root tissue structure is linked to ecological strategies of grasses. New Phytologist 148:459-471. If ever there was a golden key to unlocking root function in different environments, this would be it. Why this study has not been replicated a dozen times, I do not understand. (30 cites)
2) Dietz, H. and F. H. Schweingruber. 2002. Annual rings in native and introduced forbs of lower Michigan, USA. Canadian Journal of Botany 80:642-649. The idea that you can dig up grassland plants and age them should have set fire to our understanding of plant population dynamics in grasslands. (12 cites)
3) McManus, W. R., V. N. E. Robinson, and L. L. Grout. 1977. Physical Distribution Of Mineral Material On Forage Plant-Cell Walls. Australian Journal of Agricultural Research 28:651-662. The idea that plants accumulate minerals on their cell walls and might use them for structural purposes fundamentally alters how we think of plant structure and turns plant stoichiometry on its ear. It’s never been followed up on as far as I know. (12 cites)
4) McNaughton, S. J., J. L. Tarrants, M. M. McNaughton, and R. D. Davis. 1985. Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66:528-535. This one came to mind after the previous one. Silica as structure changes the game. This became cited a bit more in 2006-7, but other than those two years never had more than 5 citations a year. (85 cites)
I’ll give this some more thought later. This is a hard list to compile (and my kids are awake now). I should be able to come up with a top ten list of obscure papers later.
The family and I are on vacation in the Olympic Peninsula of Washington. We’ve spent the past three days at Lake Quinalt, which is on the southwest side of mountains and surrounded by temperate rainforest. A few things struck me while here. First, 15 feet of rain (the record annual precipitation) is a lot, but it can be hot and dry here. Second, it would have been wise to have bought a cooler and fast on smoothies for three days. There are few places to eat around here, especially since we are going back to Seattle to eat at places like Salumi and Pike Place Market.
The Quinalt River Valley has six record trees in it. The world’s largest western red cedar, Douglas fir, mountain hemlock, and Sitka spruce, are all in the one valley. The western red cedar is 19.5 feet across. It’s hollow in the middle and you can see daylight when you look up from within. I’m not sure where the phloem was, but there were green limbs up high. The Sitka spruce is 17 feet across and aside from being stuck between an RV park and a golf course, is impressive.
As we’ve hiked through the forests here, it has been interesting to think about how these trees have been accumulating environmental records for so long. Tree ring width and carbon and oxygen isotopes are the main records examined, but I’ve been thinking more about the nitrogen isotopes. From work I’ve done with Kendra in the past, every tree potentially has a record of nitrogen availability in its rings. The isotopic ratio of nitrogen stored in wood is largely set down initially and has been shown to track N availability. Only a small number of trees have had the N isotopes in wood measured and for the most part we are ignorant about how N availability has changed in these immense forests or others. It’s an important question since we don’t know how elevated CO2 has affected N availability or how frequently N availability might peak with disturbances, which has important implications for the ecology of these forests.
I am pretty sure we don’t have a 10 foot increment borer in the lab, but there are some long records here just waiting to be read.
Dave Tilman’s great advance for understanding competition over 30 years ago was to introduce the idea that competitive outcomes were determined by resource reduction. Phytoplankton that could lower the concentration of a limiting nutrient to the lowest level would become competitively superior. When applied to plants in soil, the concentration reduction hypothesis assumed that soil solutions were well-mixed and it was the average soil solution concentration that determined the rate at which a plant grew. As such, lowering the average soil solution concentration of a limiting nutrient was the key to displacing other species.
Leaving aside the assumptions of the nature of the nutrient supply, for plants in soil, resource reduction is still the mechanism for competitive displacement. Yet, it’s not concentration reduction, but supply preemption that determines competitive superiority. When nutrients are limiting, a plant competes for a limiting nutrient supply by attempting to preempt the nutrient supply from other plants. Due to the relatively slow diffusion of nutrients in soil, as roots acquire nutrients from the soil solution, nutrient supplies are partitioned among plants based on the relative amount of root length they hold in a particular soil volume. The key to acquiring the majority of a given nutrient supply is root length dominance, which reduces the availability of nutrients to others.
Although the magnitude of this conceptual shift is open, supply preemption is the proper application of resource reduction to plants growing in soil. What about other resources? As I discuss in RSWP, supply preemption is the best concept for understanding light competition, too. Water is notoriously pulsed in availability, but supply preemption rules here, too. Just a bit different than nutrients that are supplied evenly over time.
Competition research can be summarized as “who wins and why?” The secret to competing for resources is to get them before your neighbors do. Took about 30 years to nail down how that works on land, and it'll probably take another few decades likely to nail down the details.
B0 is biomass of controls
BN is biomass with +N
BP is biomass with +P
BNP is biomass with +N+P
To make matters simple, let’s assume that there is no effect of P added alone and that the biomass of plants with N and P added is greater than unfertilized biomass.
With this, we’re trying to separate three cases.
1) Classic co-limitation (co-limitation by supply) where there is no direct effect of N (or a relatively small one).
2) Primary limitation by N and secondary limitation by P
3) Single resource limitation where there is an N effect, but no effect of P on N-fertilized plants.
First we can compare the absolute changes in biomass relative to controls and compare the N effect to the NP effect. If we calculate the co-limitation index as
(BN-B0)-(BNP-B0)/2
then a plant that had a CI > 0 would be primarily limited by N and secondarily by P. A CI <>
The interpretation of the pattern would be that soils with low P availability are co-limited by N and P. As P availability increases plants are more likely to be primarily limited by N and secondarily limited by P.
That’s a pretty clean story, but the problem with this approach is that you cannot separate if a plant is secondarily limited by P or just limited by N.
To get around this we can calculate a co-limitation index as:
(BN-B0)/(BNP-B0)
With this index, 0≤CI<0.5>
Here are the patterns for the 100 soils data:
Pretty much the same story. Plants start out co-limited by N and P at low P availability. Then as P availability increases P limitation becomes more secondary until ~30 ppm available P at which we’re into strict single limitation by N. The problem with this approach is that the relative index is sensitive to BNP. For the graph at left I had to exclude two points that had |CI|>10.
With these approaches statistical significance relative to threshold values, e.g. CI = 0 for the first index, are possible. I’m not sure how to extract them from JMP yet.
Note with a factorial resource addition experiment there are something like 9 different basic responses when you include inhibition and responses by individual resources. There will be no way to boil, but we might be able to get the most important patterns down to 2.